Analyzing Dialog Coherence Using Transition Patterns in Lexical and Semantic Features
نویسندگان
چکیده
In this paper, we present methods to analyze dialog coherence that help us to automatically distinguish between coherent and incoherent conversations. We build a machine learning classifier using local transition patterns that span over adjacent dialog turns and encode lexical as well as semantic information in dialogs. We evaluate our algorithm on the Switchboard dialog corpus by treating original Switchboard dialogs as our coherent (positive) examples. Incoherent (negative) examples are created by randomly shuffling turns from these Switchboard dialogs. Results are very promising with the accuracy of 89% (over 50% baseline) when incoherent dialogs show both random order as well as random content (topics), and 68% when incoherent dialogs are random ordered but on-topic. We also present experiments on a newspaper text corpus and compare our findings on the two datasets.
منابع مشابه
Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity
Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...
متن کاملOn the Role of Derivational Processes in the Formation of Non-Taxonomic Classes of Lexical Units in Russian
The paper is focused on classes of lexical units which arise as a result of derivational processes – word formation and semantic transfers, acting either in isolation or together, on the basis of common semantic foundations that bind targets and sources of derivation. The lexical items which constitute the classes under study vary in their denotative characteristics and due to their categ...
متن کاملPreferred Lexical Access Route in Persian Learners of English: Associative, Semantic or Both
Background: Words in the Mental Lexicon (ML) construct semantic field through associative and/ or semantic connections, with a pervasive native speaker preference for the former. Non-native preferences, however, demand further inquiry. Previous studies have revealed inconsistent Lexical Access (LA) patterns due to the limitations in the methodology and response categorization. Objectives: To f...
متن کاملModeling the dative alternation with automatically extracted features ∗
We show that generation of contextually appropriate syntactic variation can be improved using a model based on automatically extracted features. We adapt a model for predicting dative alternation from (Bresnan et al. 2005); this model incorporates lexical, syntactic, semantic and pragmatic features. We evaluate the effect of using different types of feature on this classification task and show ...
متن کاملExploiting prosodic features for dialog act tagging in a discriminative modeling framework
Cue-based automatic dialog act tagging uses lexical, syntactic and prosodic knowledge in the identification of dialog acts. In this paper, we propose a discriminative framework for automatic dialog act tagging using maximum entropy modeling. We propose two schemes for integrating prosody in our modeling framework: (i) Syntaxbased categorical prosody prediction from an automatic prosody labeler,...
متن کامل